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Abstract. We review and comment on a number of results in Ramsey theory

obtained recently by the author in collaboration with V. Kanellopoulos, N.

Karagiannis and K. Tyros. Among them are density versions of the classical

pigeonhole principles of Halpern–Läuchli and Carlson–Simpson.

We shall comment on recent progress concerning one fundamental problem in

Ramsey theory. It originates from an insightful conjecture of Erdős and Turán [20]

and, in full generality, asks to determine which pigeonhole principles admit a density

version. There have been numerous dramatic developments in this direction—see,

e.g., [4, 26, 27, 39, 46] and the references therein—which go well beyond the scope

of the present review. We will thus be forced to neglect a vast amount of remarkable

current research. We shall focus, instead, on three basic pigeonhole principles which

are particularly appealing due to their widespread utility and unifying power.

1. The coloring versions

1.1. The first pigeonhole principle relevant to our discussion is the Hales–Jewett

theorem [28]. To state it we need to introduce some pieces of notation and some

terminology. For every integer k > 2 let [k]<N be the set of all finite sequences

having values in [k] := {1, . . . , k}. The elements of [k]<N are referred to as words

over k, or simply words if k is understood. If n ∈ N, then [k]n stands for the set of

words of length n. We fix a letter v that we regard as a variable. A variable word

over k is a finite sequence having values in [k] ∪ {v} where the letter v appears at

least once. If w is a variable word and a ∈ [k], then w(a) is the word obtained by

substituting all appearances of the letter v in w by a. A combinatorial line of [k]n

is a set of the form {w(a) : a ∈ [k]} where w is a variable word over k of length n.

Hales–Jewett theorem. For every k, r ∈ N with k > 2 and r > 1 there exists a

positive integer N with the following property. If n > N , then for every r-coloring

of [k]n there exists a combinatorial line of [k]n which is monochromatic. The least

positive integer with this property will be denoted by HJ(k, r).
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The Hales–Jewett theorem is often regarded as an abstract version of the van

der Waerden theorem [50] and is considered to be one of the cornerstones of con-

temporary Ramsey theory. The best known upper bounds for the numbers HJ(k, r)

are primitive recursive and are due to Shelah [40].

1.2. The second pigeonhole principle relevant to our discussion is the Halpern–

Läuchli theorem [29], a rather deep result that concerns partitions of finite products

of infinite trees. It was discovered in 1966, three years after the discovery of the

Hales–Jewett theorem, as a result needed for the construction of a model of set

theory in which the boolean prime ideal theorem is true but not the full axiom of

choice. Since then, it has been the main tool for the development of Ramsey theory

for trees, a rich area of combinatorics with significant applications, most notably

in the geometry of Banach spaces; see, for instance, [6, 8, 9, 25, 31, 32, 42, 49] and

[1, 2, 10, 11, 43, 48] for applications.

The Halpern–Läuchli theorem has several equivalent forms. We will state the

“strong subtree version” which is the most important one from a combinatorial

perspective.

Halpern–Läuchli theorem. For every finite tuple (T1, . . . , Td) of uniquely rooted

and finitely branching trees without maximal nodes and every finite coloring of the

level product ⋃
n∈N

T1(n)× · · · × Td(n) (1)

of (T1, . . . , Td), there exist strong subtrees (S1, . . . , Sd) of (T1, . . . , Td) of infinite

height and with a common level set such that their level product is monochromatic.

We recall that a subtree S of a tree (T,<) is said to be strong if: (a) S is uniquely

rooted and balanced1, (b) every level of S is a subset of some level of T , and (c)

for every non-maximal node s ∈ S and every immediate successor t of s in T there

exists a unique immediate successor s′ of s in S with t 6 s′. The last condition is

the most important one and expresses a basic combinatorial requirement, namely

that a strong subtree of T must respect the “tree structure” of T . The level set of

a strong subtree S of a tree T is the set of levels of T containing a node of S.

Although the notion of a strong subtree was isolated in the 1960s, it was high-

lighted with the work of Milliken in [34, 35] who used the Halpern–Läuchli theorem

to show that the family of strong subtrees of a uniquely rooted and finitely branch-

ing tree is partition regular.

1.3. The Hales–Jewett theorem and the Halpern–Läuchli theorem are pigeonhole

principles of quite different nature. Nevertheless, they do admit a common exten-

sion which is due to Carlson and Simpson [9]. To state it we recall that a left

1A tree S is balanced if all maximal chains of S have the same cardinality.
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variable word over k is a variable word over k whose leftmost letter is the variable

v. The concatenation of two words x and y over k is denoted by xay.

Carlson–Simpson theorem. For every integer k > 2 and every finite coloring of

the set of all words over k there exist a word c over k and a sequence (wn) of left

variable words over k such that the set

{c} ∪
{
caw0(a0)a . . .a wn(an) : n ∈ N and a0, . . . , an ∈ [k]

}
(2)

is monochromatic.

The Carlson–Simpson theorem belongs to the circle of results that refine the

Hales–Jewett theorem by providing information on the structure of the wildcard2

set of the monochromatic variable word; see, e.g., [5, 30, 33, 41, 51]. This extra

information (namely, that the sequence (wn) consists of left variable words) can

then be used to derive the Halpern–Läuchli theorem when the trees T1, . . . , Td

are homogeneous3, a special case which is sufficient for all known combinatorial

applications of the Halpern–Läuchli theorem (see [37]).

2. The density versions

It is a remarkably fruitful phenomenon that several pigeonhole principles have

a density version. These density versions are strengthenings of their coloristic

counterparts and assert that every large subset of a “structure” must contain a

“substructure”. We remark that not all coloring results in Ramsey theory admit a

density analogue—the classical Ramsey theorem [38] is a particularly striking exam-

ple. However, when a density version is available, it provides a powerful structural

information.

2.1. One of the most illuminating and well-known instances of the aforementioned

phenomenon is the density version of the Hales–Jewett theorem, a result which is

due to Furstenberg and Katznelson [24].

Density Hales–Jewett theorem. For every integer k > 2 and every 0 < δ 6 1

there exists a positive integer N with the following property. If n > N , then every

subset A of [k]n with |A| > δkn contains a combinatorial line of [k]n. The least

positive integer with this property will be denoted by DHJ(k, δ).

The density Hales–Jewett theorem is a fundamental result of Ramsey theory.

It has many strong results as consequences, most notably the famous Szemerédi

theorem on arithmetic progressions [44] and its multidimensional version [22].

2We recall that if w = (wi)
n−1
i=0 is a variable word over k of length n, then its wildcard set is

defined to be the set
{
i ∈ {0, . . . , n− 1} : wi = v

}
.

3A tree T is homogeneous if it is uniquely rooted and there exists an integer b > 2, called the

branching number of T , such that every t ∈ T has exactly b immediate successors; e.g., every

dyadic, or triadic tree is homogeneous.
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Several different proofs of the density Hales–Jewett theorem are now known; see

[3, 36, 47]. The most effective one is Polymath’s proof [36] which gives the best

known upper bounds for the numbers DHJ(k, δ).

Yet another proof of the density Hales–Jewett theorem was discovered by the

author, Kanellopoulos and Tyros in [17]. It grew out of the techniques developed

in the course of obtaining a density version of the Carlson–Simpson theorem, a

result which we will discuss in detail in §2.3. It appears that this is the simplest

known proof of this deep result, while on the same time gives essentially the same

upper bounds for the numbers DHJ(k, δ) as in [36]. These upper bounds, however,

are admittedly weak and have an Ackermann-type dependence with respect to k.

It is one of the central open problems of Ramsey theory to decide whether these

estimates can be significantly improved.

Problem 1. Is it true that the numbers DHJ(k, δ) are upper bounded by a primitive

recursive function?

2.2. The natural problem whether the Halpern–Läuchli theorem admits a density

version was first asked by Laver in the late 1960s who actually conjectured that

there is such a version. The conjecture was circulated among experts in the area

and it was explicitly stated by Bicker and Voigt in [7]. It took slightly more than

expected to decide this problem and the conjecture was finally settled affirmatively

in [13].

Density Halpern–Läuchli theorem. For every finite tuple (T1, . . . , Td) of ho-

mogeneous trees and every subset A of the level product of (T1, . . . , Td) satisfying

lim sup
n→∞

|A ∩
(
T1(n)× · · · × Td(n)

)
|

|T1(n)× · · · × Td(n)|
> 0 (3)

there exist strong subtrees (S1, . . . , Sd) of (T1, . . . , Td) of infinite height and with a

common level set such that their level product is a subset of A.

We should point out that the assumption in the above result that the trees

T1, . . . , Td are homogeneous is not redundant. On the contrary, various examples

given in [7] show that it is essentially optimal.

Just as many other infinite-dimensional results in Ramsey theory, the density

Halpern–Läuchli theorem was expected to have a finite counterpart. Isolating,

however, the proper finite analogue was a finer issue than anticipated. This was

done in [15] where the following theorem was proved.

Density Halpern–Läuchli theorem (finite version). For every integer d > 1,

every b1, . . . , bd ∈ N with bi > 2 for all i ∈ [d], every integer m > 1 and every

real 0 < δ 6 1 there exists a positive integer N with the following property. If

(T1, . . . , Td) are homogeneous trees such that the branching number of Ti is bi for

all i ∈ [d], L is a finite subset of N of cardinality at least N and D is a subset of
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the level product of (T1, . . . , Td) satisfying

|D ∩
(
T1(n)× · · · × Td(n)

)
| > δ|T1(n)× · · · × Td(n)| (4)

for every n ∈ L, then there exist strong subtrees (S1, . . . , Sd) of (T1, . . . , Td) of height

m and with a common level set such that their level product is contained in D. The

least positive integer with this property will be denoted by UDHL(b1, . . . , bd|m, δ).

The main point here is that the result is independent of the position of the

finite set L. We emphasize that this is a strong structural property that does not

follow from the corresponding infinite version via standard compactness arguments.

On the contrary, it can be used to derive the infinite version. The method of the

reduction was discussed in detail in [16, §1.3]. It has already been applied in a

different context, and should be investigated further and understood better.

We also remark that the proof in [15] is effective and yields explicit upper bounds

for the numbers UDHL(b1, . . . , bd|m, δ). However, just as in the case of the den-

sity Hales–Jewett theorem, these estimates are weak and have an Ackermann-type

dependence with respect to the “dimension” d.

2.3. It is likely that the reader has already wondered whether the Carlson–Simpson

theorem also has a density analogue. This problem was recognized by several groups

of researchers as a key step in this line of research and was answered affirmatively,

very recently, in [18].

Density Carlson–Simpson theorem. For every integer k > 2 and every set A

of words over k satisfying

lim sup
n→∞

|A ∩ [k]n|
kn

> 0 (5)

there exist a word c over k and a sequence (wn) of left variable words over k such

that the set

{c} ∪
{
caw0(a0)a . . .a wn(an) : n ∈ N and a0, . . . , an ∈ [k]

}
(6)

is contained in A.

We have already indicated that the proof of the density Carlson–Simpson the-

orem follows the strategy developed in [16]. In particular, the proof is based on a

reduction of the infinite version to an appropriate finite one. This finite version,

which represents the combinatorial core of the above result, is the content of the

following theorem also proved in [18].

Density Carlson–Simpson theorem (finite version). For every integer k > 2,

every integer m > 1 and every 0 < δ 6 1 there exists a positive integer N with the

following property. If L is a finite subset of N of cardinality at least N and A is a

set of words over k satisfying |A ∩ [k]n| > δkn for every n ∈ L, then there exist a
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word c over k and a finite sequence (wn)m−1n=0 of left variable words over k such that

the set

{c} ∪
{
caw0(a0)a . . .a wn(an) : n ∈ {0, ...,m− 1} and a0, . . . , an ∈ [k]

}
(7)

is contained in A. The least positive integer with this property will be denoted by

DCS(k,m, δ).

Again we emphasize that the main point here is that the result is independent

of the position of the finite set L.

It is easily seen that the density Carlson–Simpson theorem implies both the

density Hales–Jewett theorem and the density Halpern-Läuchli theorem. In fact

we have finer quantitative information. Specifically, by [18, Proposition 11.13], it

follows that

DHJ(k, δ) 6 DCS(k, 1, δ). (8)

On the other hand, using standard arguments (see, e.g., [9, 37]) we get that

UDHL(b1, . . . , bd|m, δ) 6 DCS
( d∏

i=1

bi,m, δ
)
. (9)

These remarks and the two metric relations isolated above indicate that the density

Carlson–Simpson theorem is a statement which is centrally located in this part of

Ramsey theory.

Also we notice that the argument in [18] yields explicit upper bounds for the

numbers DCS(k,m, δ). Unfortunately, these upper bounds are rather weak and

shed no light on the behavior of the invariants DHJ(k, δ) and UDHL(b1, . . . , bd|m, δ).
Nevertheless, it is natural to expect that there exist significantly stronger estimates.

Conjecture 2. The numbers DCS(k,m, δ) are upper bounded by a primitive recur-

sive function.

Notice, in particular, that an affirmative answer to Conjecture 2 will automati-

cally settle in the affirmative Problem 1. While we strongly believe on the validity

of Conjecture 2, we remark that such an achievement is certainly out of reach of

current technology and is likely to require radical new ideas.

3. The probabilistic versions

The proofs of the results mentioned in §2 require a number of tools and a variety

of techniques whose proper exposition is a lengthy and delicate task. We will

thus narrow down our discussion to a particular part of the argument which is

nevertheless central to the approach. In fact, this part of the argument is just an

instance of yet another general phenomenon in Ramsey theory that concerns the

structure of measurable events in probability spaces indexed by a Ramsey space [8].

The phenomenon is most transparently seen when the events are indexed by the

natural numbers N, an archetypical Ramsey space. Specifically, let (Ω,Σ, µ) be a
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probability space and assume that we are given a family {Ai : i ∈ N} of measurable

events in (Ω,Σ, µ) satisfying µ(Ai) > ε > 0 for every i ∈ N. Using Ramsey’s

classical theorem [38] and elementary probabilistic estimates (see, e.g., [21]), it is

easy to see that for every 0 < θ < ε there exists an infinite subset L of N such that

for every integer n > 1 and every subset F of L of cardinality n we have

µ
( ⋂

i∈F
Ai

)
> θn. (10)

In other words, the events in the family {Ai : i ∈ L} are at least as correlated as if

they were independent.

Now suppose that the events are not indexed by the natural numbers but are

indexed by another Ramsey space S. A natural problem, which is of combinatorial

and analytical importance, is to decide whether the aforementioned result is valid

in the new setting.

Problem 3. Given a family {As : s ∈ S} of measurable events in a probability

space (Ω,Σ, µ) indexed by a Ramsey space S and satisfying µ(As) > ε > 0 for

every s ∈ S, is it possible to find a “substructure” S ′ of S such that the events in

the family {As : s ∈ S ′} are highly correlated? And if yes, then can we get explicit

(and, hopefully, optimal) lower bounds for their joint probability?

Of course, the notion of “substructure” will depend on the nature of the given

index set S. In all cases of interest, this problem is essentially equivalent to that

of finding “copies” of given configurations inside dense sets of discrete structures.

The equivalence between the two perspectives is discussed in detail in [18, §8.1]

and is based on the “regularity method”, a remarkable discovery of Szemerédi [45]

asserting that dense sets of discrete structures are inherently pseudorandom.

3.1. A systematic study of Problem 3 was initiated in [14] where the case of a family

of events indexed by a homogeneous tree was treated. Of course, the problem is

also of interest when the index set is a tree belonging to a wider class. However

the critical case is that of homogeneous trees—see [14, Appendix A]—and in this

direction the following theorem was proved.

Theorem A. Let T be a homogeneous tree with branching number b. Also let

{At : t ∈ T} be a family of measurable events in a probability space (Ω,Σ, µ)

satisfying µ(At) > ε > 0 for every t ∈ T . Then for every 0 < θ < ε there exists a

strong subtree S of T of infinite height such that for every integer n > 1 and every

subset F of S of cardinality n we have

µ
( ⋂

t∈F
At

)
> θq(b,n) (11)

where

q(b, n) =
(2b − 1)2n−1 − 1

2b − 2
. (12)
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Observe that the integer q(b, n) obtained above depends exponentially on n.

Nevertheless, the estimate in (12) is fairly “civilized” and is arguably one of the

best bounds available in this part of Ramsey theory. A basic ingredient of the

proof of Theorem A—an ingredient which is partly responsible for the effectiveness

of the argument—is an appropriate generalization of the notion of a “Shelah line”,

a fundamental tool in Ramsey theory introduced by Shelah in his work [40] on the

van der Waerden and the Hales–Jewett numbers.

3.2. In [16] the above analysis was extended to the higher-dimensional setting,

namely when we deal with events indexed by the level product of a vector ho-

mogeneous tree. Recall that a vector homogeneous tree T is a finite sequence

(T1, . . . , Td) of homogeneous trees and its level product ⊗T is the subset of the

Cartesian product T1 × · · · × Td consisting of all finite sequences (t1, . . . , td) of

nodes having common length. The corresponding notion of “substructure” is that

of a vector strong subtree. Specifically, a vector strong subtree of a vector homo-

geneous tree T = (T1, . . . , Td) is just a finite sequence S = (S1, . . . , Sd) of strong

subtrees of (T1, . . . , Td) having a common height and a common level set.

The following result is the higher-dimensional analogue of Theorem A and was

proved in [16].

Theorem B. For every integer d > 1, every b1, . . . , bd ∈ N with bi > 2 for all

i ∈ [d], every integer n > 1 and every 0 < ε 6 1 there exists a strictly positive

constant c(b1, . . . , bd|n, ε) with the following property. If T = (T1, . . . , Td) is a vector

homogeneous tree such that the branching number of Ti is bi for all i ∈ [d] and if

{At : t ∈ ⊗T} is a family of measurable events in a probability space (Ω,Σ, µ)

satisfying µ(At) > ε for every t ∈ ⊗T, then there exists a vector strong subtree

S = (S1, . . . , Sd) of T of infinite height such that for every integer n > 1 and every

subset F of the level product ⊗S of S of cardinality n we have

µ
( ⋂

t∈F
At

)
> c(b1, . . . , bd|n, ε). (13)

The proof of Theorem B is effective and yields explicit estimates for the constants

c(b1, . . . , bd|n, ε). These estimates, however, rely heavily on the bounds obtained

in [15] and are, therefore, rather poor. It is a challenging open problem to obtain

“civilized” bounds for these constants, a problem which is closely related to that of

improving the upper bounds for the numbers UDHL(b1, . . . , bd|m, δ).

3.4. We conclude this review with a discussion on the results in [19] dealing with

a family of measurable events indexed by words. In this context the appropriate

notion of “substructure” is that of a Carlson–Simpson tree [9, 18]. Recall that a

Carlson–Simpson tree of [k]<N of dimension m > 1 is a subset of [k]<N of the form

{c} ∪
{
caw0(a0)a . . .a wn(an) : n ∈ {0, . . . ,m− 1} and a0, . . . , an ∈ [k]

}
(14)
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where c is a word over k and (wn)m−1n=0 is a nonempty finite sequence of left variable

words over k.

The following theorem was proved in [19] and is a strong “probabilistic” version

of the density Carlson–Simpson theorem.

Theorem C. For every integer k > 2, every 0 < ε 6 1 and every integer n > 1

there exists a strictly positive constant θ(k, ε, n) with the following property. If m is

a given positive integer, then there exists a positive integer Cor(k, ε,m) such that for

every Carlson–Simpson tree T of [k]<N of dimension at least Cor(k, ε,m) and every

family {At : t ∈ T} of measurable events in a probability space (Ω,Σ, µ) satisfying

µ(At) > ε for every t ∈ T , there exists a Carlson–Simpson tree S of dimension m

with S ⊆ T and such that for every nonempty F ⊆ S we have

µ
( ⋂

t∈F
At

)
> θ(k, ε, |F |). (15)

The invariants of main interest in Theorem C are, of course, the constants

θ(k, ε, n). The argument in [19] does yield quantitative information for these in-

variants but, unsurprisingly, this information is weak. However, more important is

the fact that for the proof of Theorem C a number of tools needed to be developed,

including a refinement of a partition result due to Furstenberg and Katznelson [23].

This refinement is of independent interest and forms the basis for a complete clas-

sification of those classes of subsets of Carlson–Simpson trees which are partition

regular. The details of this classification will appear in [12].

Acknowledgments. I would like to thank Vassilis Kanellopoulos, Stevo Todorce-

vic and Kostas Tyros for their comments and remarks.
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